
 DRAFT: Feb 12, 2003 

GSI3: Security for Grid Services  
Von Welch1(welch@mcs.anl.gov), Frank Siebenlist2, Ian Foster12, John Bresnahan2, Karl 

Czajkowski3, Jarek Gawor2, Carl Kesselman3, Sam Meder1, Laura Pearlman3, Steven 
Tuecke2 

 
1University of Chicago, Department of Computer Science 

2Argonne National Laboratory, Mathematics and Computer Science 
3University of Southern California, Information Sciences Institute 

 

Abstract 
Grid computing is concerned with the sharing and coordinated use of diverse resources 
in distributed "virtual organizations.” The dynamic and multi-institutional nature of 
these environments introduces challenging security concerns that demand new technical 
approaches. In particular, we must deal with diverse local mechanisms, support dynamic 
creation of services, and enable dynamic creation of trust domains. We describe how 
these issues are addressed in two generations of the Globus Toolkit (GT2). First, we 
review the GT2 approach; then, we describe in detail new approaches developed to 
support the GT3 implementation of the Open Grid Services Architecture, a new initiative 
aimed at recasting key Grid concepts within a service-oriented framework. GT3’s 
security implementation uses WS-Security mechanisms for credential exchange and other 
purposes, and introduces a tight least privilege model that avoids the need for any 
privileged service. 

1 Introduction 
The term “Grid” refers to systems and applications that integrate and manage resources 
and services that are distributed across multiple control domains [12]. Initially pioneered 
in the e-science context, Grid technologies are also generating interest in industry, as a 
result of their apparent relevance to commercial distributed computing scenarios [14]. 

A common scenario within Grid computing is the formation of dynamic “virtual 
organizations” (VOs) [16] comprising groups of individuals and associated resources and 
services united by a common purpose but not located within a single administrative 
domain. The need to support the integration and management of resources within such 
VOs introduces challenging security issues [15]. For a variety of issues relating to 
certification, group membership, authorization, and the like, participants in such VOs 
represent an overlay with respect to whatever trust relationships exist between individual 
participants and their parent organizations, as well as with respect to whatever security 
mechanisms are in place at those parent organizations. 

Grid computing research has produced security technologies based around not direct 
interorganizational trust relationships but rather the use of the VO as a bridge among the 
entities participating in a particular community or function. The results of this research 
have been incorporated into a software system called the Globus Toolkit®1(GT) that is 
now seeing widespread use [4], and that uses public key technologies to address issues of 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

single sign on, delegation [17], and identity mapping, while supporting standard APIs 
such as GSS-API [23]. The Grid Security Infrastructure (GSI) is the name given to the 
portion of the Globus Toolkit implementing its needed security functionality. 

The recent definition of the Grid service specification and other elements of the Open 
Grid Services Architecture (OGSA) [14] within the Global Grid Forum (GGF) introduces 
new challenges and opportunities for Grid security. In particular, integration with Web 
services and hosting environment technologies introduces opportunities for integration 
with a variety of emerging security technologies, such as SAML and Web services 
security 

Integration of GSI with OGSA enables the use of Web services techniques for policy 
publishing [2] allowing applications to automatically determine what security policies 
and mechanisms are required of them. Implementing security in the form of OGSA 
services allows them to be used as needed by applications to meet these requirements. 
Advanced hosting environments enable this functionality to be implemented outside of 
the application, simplifying development. 

The remainder of this article is as follows. We review Grid security challenges in Section 
2 and GT3 security mechanisms in Section 3. Then, in Sections 4 and 5, we introduce 
OGSA security mechanisms and our GT3 implementation. We conclude in Section 6 
with a brief discussion of future work. 

2 Grid Security Challenges 
Security requirement within the Grid environment are driven by the need to support 
scalable, dynamic, distributed Virtual Organizations (VOs) [16]—collections of diverse 
and distributed individuals that seek to share and use diverse resources in a coordinated 
fashion resources. From a security perspective, a key attribute of VOs is that participants 
and resources are still members of their classical organizations and are governed by their 
rules and policies. 

While some VOs, such as multiyear scientific collaborations, may be large and long-lived 
and will be created through negotiated access to resources with the resource providers, 
others may be short-lived, with little or no overhead desired. For example, two 
individuals may wish to share documents and data across their organizations as they write 
a proposal, in effect forming a VO to complete that single task. In such situations, the 
resources being coordinated will have no preexisting knowledge of each other but are 
coordinated only through their trust of the user. 

A VO may be thought of as a policy domain overlay. Multiple resources or organizations 
outsource certain policy control(s) to a third party, the VO, which coordinates the 
outsourced policy in a consistent manner to allow for coordinated resource sharing and 
use. 

Complicating Grid security is the fact that new services (i.e., resources) may be deployed 
and instantiated dynamically over a VO’s lifetime. For example, a user may establish 
personal stateful interfaces to existing resources, or the VO itself may create directory 
services to keep track of VO participants. Like their static counterparts, these resources 
must be securely coordinated and interact with other services. 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

Domain A
Domain B

Domain C

Virtual Organization
Policy Overlay Trust

Domain D

 
Figure 1: A Virtual Organization policy domain overlay pulls together participants from disparate 

domains into a common trust domain. 

 

This combination of dynamic policy overlays and created entities drives the need for 
three key functions in a Grid security model. 

1. Multiple security mechanisms. Organizations joining a VO often have significant 
investment in existing security mechanisms and infrastructure. Grid security must 
interoperate with, rather than replace, those mechanisms. 

2. Dynamic creation of services. Users must be able to create new services (i.e., 
“resources”) dynamically without administrator intervention. These services need 
to be coordinated and must interact securely with other services. Thus, we must 
be able to (1) name the service with an assertable identity and (2) grant rights to 
that identity. 

3. Dynamic establishment of trust domains. In order to coordinate resources, VOs 
need to establish trust not only between users in the VO and the resources, but 
also among the resources. These trust domains can span multiple organizations 
and must adapt dynamically as participants join, are created, or leave the VO. 

Traditional means of security administration involving manual editing of policy databases 
or issuance of credentials cannot meet the demands of these dynamic scenarios. We 
require a user-driven security model that allows users to create entities and policy 
domains in order to create and coordinate resources within VOs.  

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

3  GT2 Grid Security Model  
To set the stage for our discussion of OGSA and GT3 security, we review briefly the 
security technologies incorporated in the Globus Toolkit version 2 (GT2) [13] and 
explain how these address the three key issues introduced above. GT2 includes services 
for Grid Resource Allocation and Management (GRAM), Monitoring and Discovery 
(MDS), and data movement (GridFTP). These services use a common Grid Security 
Infrastructure (GSI) [4, 15] to provide security functionality. 

Diverse site security mechanisms. GSI defines a common credential format based on 
X.509 identity certificates [5, 28] and a common protocol based on transport layer 
security (TLS[10], SSL [18]). An X.509 certificate, in conjunction with an associated 
private key, forms a unique credential set that a Grid entity (service or user) uses to 
authenticate itself to other Grid entities; the TLS-based protocol is used to perform 
authentication and then provide message protection (encryption, integrity checking) as 
desired on the subsequent data stream. Gateways are then used to translate between this 
common GSI infrastructure and local site mechanisms. For example, the Kerberos 
Certificate Authority (KCA) [29] and SSLK5/PKINIT provide translation from Kerberos 
to GSI and back, respectively. These mechanisms allow a site with an existing Kerberos 
installation to continue to use that installation and convert credentials between Kerberos 
and GSI as needed. 

Each GSI certificate is issued by a trusted party known as a certificate authority (CA), 
usually run by a large organization or commercial company. In order to trust the X.509 
certificate presented by an entity, one must trust the CA that issued that certificate. We 
chose to use X.509 identity certificates within GSI because establishment of this trust is 
relatively lightweight. In contrast to mechanisms such as Kerberos [25], where trust must 
be established bilaterally, requiring an agreement at the organizational level, trust in a CA 
can be established unilaterally. A single entity in an organization can decide to trust any 
CA, without necessarily involving the organization as a whole. This is a key to the 
establishment of VOs that involve only some portions of an organization that may receive 
little or no support from their organization. 

Dynamic creation of entities and the granting of privileges to those entities. GSI 
introduces X.509 proxy certificates, a GSI extension to X.509 identity certificates [28] 
that allow a user to assign dynamically a new X.509 identity to an entity and then 
delegate some subset of their rights to that identity. Proxy certificates are created by users 
issuing a new set of X.509 credentials signed using their own credentials instead of 
involving a CA. This mechanism allows new credentials and identities to be created 
quickly without the involvement of a traditional administrator. 

Dynamically creation and management of overlaid trust domains. The requirement for 
overlaid trust domains to establish VOs is satisfied by GSI using both proxy certificates 
and security services such as the Community Authorization Service (CAS) [26]. Proxy 
certificates allow for the dynamic creation of trust domains by a user, since they have an 
implicit policy that two entities bearing proxy certificates issued by the same user will 
inherently trust each other. Hence, users can issue proxy certificates to any services that 
they wish so that they can work together and form a trust domain based on the implicit 
trust policy. 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

Security services such as CAS allow for flexible, expressive policy to be created 
regarding multiple users in a VO. CAS allows a VO to express the policy that has been 
outsourced to it by the resource providers in the VO. As illustrated in Figure 2, 

1. The user authenticates to CAS and receive assertions from CAS expressing the 
VO’s policy in terms of how that user may use VO resources. 

2. The user then presents the assertion to a VO resource along with the usage 
request. 

3. In evaluating whether to allow the request, the resource checks both local policy 
and the VO policy expressed in the CAS assertion. 

CAS thus allows the resource to remain the ultimate authority over their resource, but it 
also allows the VO to control some portion of the enforced policy. In turn, the VO can 
coordinate the policy across a number of resources to control the sharing of those 
resources by the VO. 

 

 

CAS

Local Policy

VO Policy

Applied Policy

(3)

(2)

(1)

 
Figure 2: CAS allows VOs to express policy and resources to apply policy that is subset of VO and 

local policy. 

In designing the GSI we evaluated several related efforts before selecting PKI as the basis 
on which to build for GSI. In much of the existing work, we noted the following short-
comings in meeting the Grid security requirements: 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

• Kerberos [25] requires the explicit involvement of site administrators to establish 
interdomain trust relationships or to create new entities. 

• The CRISIS wide area security system [3] defines a uniform and scalable 
security infrastructure for wide area systems but does not address interoperability 
with local security mechanisms. 

• Secure SHell (SSH) [30] provides a strong system of authentication and message 
protection but has no support for translation between different mechanisms and 
creation of dynamic entities. 

• The Legion security model [19] is perhaps the most similar to that of GT2, using, 
for example, X.509 certificates for delegation- however, it lacks mechanisms for 
interacting with local site mechanisms. 

4 An OGSA Security Model 
We now turn to the problem of addressing Grid security challenges within the context of 
the Open Grid Services Architecture (OGSA) [14], a set of technical specifications that 
aligns Grid technologies with emerging Web services technologies [18].  

"Web services" is used to describe software components in terms of methods for their 
access, bindings of these methods to specific mechanisms, and methods of discovery of 
relevant services. In particular, the Simple Object Access Protocol (SOAP) [1] provides a 
means of messaging using XML envelopes to encapsulate payloads, with HTTP the most 
commonly used underlying protocol. Another example is the Web Services Description 
Language (WSDL) [7], which provides a method to express the operation signatures as 
well as their bindings to protocols and endpoints in an XML document (groups of 
operations bundled together to form a Web Service). 

OGSA defines standard Web service interfaces and behaviors that add to Web Services 
the concepts of stateful services and secure (when required) invocation (as well as other 
abilities to address Grid specific requirements, which are not relevant for this paper). 
These functions define what is called a "Grid Service" and allow users to create and 
manipulate Grid Services, as allowed by policy, to create sophisticated distributed 
services. Grid services can define, as part of their interface, service data elements (SDEs) 
that other entities can (again, subject to policy) query or subscribe to.  

OGSA introduces both new opportunities and new challenges for Grid security. 
Emerging Web services security specifications address the expression of Web service 
security policy (WS-Policy [2]), standard formats for security token exchange (WS-
Security [22]), standard methods for authentication and establishment of security contexts 
(WS-SecureConversation [20]), and standard methods for the establishment of trust 
relationships (WS-Trust [21]). These specifications can be exploited, but may in some 
cases also need to be extended, to address the Grid security requirements listed above. 

Version 3 of the Globus Toolkit (GT3) and its accompanying Grid Security Infrastructure 
(GSI3) provide the first implementation of OGSA mechanisms. GT3’s security model 
seeks to allow applications and users to operate on the Grid in as seamless and automated 
a manner as possible. Security mechanisms should not have to be instantiated in an 
application but instead should be supplied by the surrounding Grid infrastructure, 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

allowing it to adapt on behalf of the application to meet its requirements. The application 
should need to deal with only application-specific policy. GT3 uses the following 
powerful features of OGSA and Web Services security to work toward that goal: 

1. Casting security functionality as OGSA services to allow them to be located and 
utilized as needed by applications. 

2. Use of sophisticated hosting environments to handle security for applications and 
allow security to adapt without having to change the application. 

3. Publishing service security policy so that clients can discover dynamically what 
credentials and mechanisms are needed to establish trust with the service. 

4. Specified standards for the exchange of security tokens to allow for 
interoperability. 

In this section we describe how each of these features is used in our OGSA security 
model and then explain how they are used together to support seamless Grid security. 

4.1 Security as Services 
Secure operation in a Grid environment requires that application and services have a 
variety of security functionality, such as authentication, authorization, credential 
conversion, auditing, and delegation. Grid applications need to interact with other 
applications and services that have a range of security mechanisms and requirements. 
These mechanisms and requirements are also likely to evolve over time as new 
mechanisms are developed or policies change. Grid applications need to avoid having 
security mechanism statically implemented and must be able to adapt to these changing 
requirements. 

Our OGSA security model casts security functions as OGSA services. This strategy 
provides well-defined protocols and interfaces for these services and allows an 
application to outsource security functionality by using a security service with a 
particular implementation to fit its current need. 

The OGSA Security Roadmap [31] itemizes numerous security services. A few examples 
are listed here: 

• Credential processing: A service that handles the details of processing and 
validating authentication tokens 

• Authorization: A service that takes as input information about a client (identity, 
attributes, etc.), a service's policy, and details of the clients request and renders a 
policy decision on the request. 

• Credential Conversion: A service that allows bridging of different trust or 
mechanism domains by converting credentials between trust roots or mechanisms. 

• Identity Mapping: A service that takes a user's identity in one domain and returns 
the identity in another (e.g. given the user's X.509 identity, it could return the 
Kerberos principal name). 

• Audit: A service that accepts information about events and securely logs them 
appropriately. 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

4.2 Hosting Environment 
Finding and utilizing security services as described in the preceding section require 
sophistication on the part of the application. Ideally, application developers should not be 
burdened with the details of this process. 

Grid services, like the Web services they leverage, may also be built on sophisticated 
container-based hosting environments such as J2EE or .Net. These hosting environments 
provide a high level of functionality and allow for the security implementations to be 
pulled from the applications and placed in the hosting environment. We envision that 
much of the functionality of security will be placed into the hosting environment, freeing 
the application of having this implementation and allowing it to be upgraded 
independently of the application. 

4.3 Publishing of Security Policy 
In order to establish trust, two entities need to be able to find a common set of security 
mechanisms that both understand. The use of hosting environments and security services, 
as described previously in this section, enables OGSA applications and services to 
dynamically adapt and use different security mechanisms. However, in order to properly 
select the security mechanisms and credentials to use, an application must know what 
mechanisms and credentials are acceptable to the service with which it wishes to interact. 

The WS-Policy [2] specification and its related specifications define how a Web service 
can publish its security policy along with its interface specification as part of a WSDL 
document. Such a published policy can express requirements for mechanisms, acceptable 
trust roots, token formats, and other security parameters. An application wishing to 
interact with the service can examine this published policy and gather the needed 
credentials and functionality by contacting appropriate OGSA security services. 

4.4 Specified Format for Security Tokens 
The WS-Security [22],WS-SecureConversation [20], and WS-Trust[21] specifications 
contain formats for the communication of various formats of mechanism-specific tokens 
(e.g., Kerberos tickets, X.509 certificates) inside SOAP envelopes. This enveloping 
standardizes the protocol for security mechanisms and allows mechanisms to be 
independent from any application protocol. Hosting environments can recognize security-
related messages and route them to an appropriate service for handling, and entities in the 
network can recognize if and how an interaction is secured. For example, a firewall can 
recognize whether a connection is authenticated and then allow only authenticated 
connections. 

4.5 The OGSA Security Model in Action 
Figure 3 shows a simplified example of the OGSA security model in action. A request is 
made by the OGSA client at left to the OGSA service on the right. Both client and service 
are contained in an advanced hosting environment (Section 4.2), which handle all the 
security functionality for their contained application and service. For clarity many details 
of the security process, such as auditing, client-side authorization, and privacy are 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

omitted, but they would function similarly with the hosting environments using OGSA 
services to provide the needed functionality. 

OGSA
Client

Hosting Env.

OGSA
Service

Hosting Env.

Published
Security
Policy

Credential
Conversation

Service

Token
Processing

Service

Security Services

Authorization
Service …

Request

1
2

3 4
5

 
Figure 3: Example of a secured request in the OGSA security model. Steps are described in the text. 

The client first forms a request intended for the OGSA service and passes the request to 
its hosting environment for processing and delivery. The following steps are then taken to 
handle the security of the request: 

1. The client’s hosting environment retrieves and inspects the security policy of the 
target service to determine what mechanisms and credentials are required to 
submit a request. 

2. If the client’s hosting environment determines the needed credentials are not 
already present, it contacts a credential conversion service to convert existing 
credentials to those of the needed format, mechanism, and/or trust root. Two 
examples of such services are CAS [26], for translating the user’s personal 
credential to a VO credential, and KCA, for converting between Kerberos and 
PKI mechanisms. 

3. The client’s hosting environment uses a token processing and validation service 
(e.g., XKMS [11]) to handle the formatting and processing of authentication 
tokens for exchange with the service. This service relieves the application and its 
hosting environment of having to understand the details of any particular 
mechanism.  

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

4. On the server side, the hosting environment likewise uses a token processing 
service to process the authentication tokens presented by the client. (Note that in 
the example, both use the same service, but each could use a separate service.) 

5. After authentication and the determination of client identity and attributes, the 
service’s hosting environment presents the details of the request and client 
information to an authorization service (e.g., PERMIS [6], Akenti [27]) for a 
policy decision. 

If all the above steps complete successfully, the service’s hosting environment then 
presents the authorized request to the service application. The application, knowing that 
the hosting environment has already taken care of security, can focus on application-
specific request processing steps. 

5 GT3 Security Implementation 
The Globus Toolkit version 3 (GT3)’s Grid Security Infrastructure version 3 (GSI3) 
implements key components of the OGSA security model described in Section 4. The 
resulting system has two key advantages over its GT2 predecessor described in Section 3: 

• Use of WS-Security protocols and standards. GT3 uses SOAP and the Web 
Services security specifications for all of its communications. This allows it to 
leverage and use standard current and future Web Service tools and software. 

• Tight least-privilege model. In contrast to GT2, the GT3 resource management 
implementation makes us of absolutely no privileged services. All privileged code 
is contained in two small, tightly constrained setuid programs. 

5.1 Use of Web Services Security and Protocol 
GT2 uses the TLS transport protocol for both security context establishment and message 
protection. Establishment of a security context between parties serves both to achieve 
mutual authentication between the parties and to establish state that is used subsequently 
for message protection via encryption (for confidentiality) and/or message digests  (to 
prevent tampering). 

GT3 uses Web services specifications to allow security messages and secured messaged 
to be transported, understood and manipulated by standard Web Services tools and 
software. It achieves security context establishment by implementing WS-
SecureConversation [20], which uses SOAP messages to transport context-establishment 
tokens between the two parties. Our implementation carries the same tokens as in GT2 
but transports them over SOAP instead of TCP. Once the context is established, GSI3 
implements message protection using the XML-Signature and XML-Encryption 
specifications. 

In addition to the context-based communication described in the preceding section, GT3 
offers the ability to secure messages independent of any established security context. 
Thus, a message can be created and secured without synchronous communication having 
to be established with the recipient. In the case of a message that is simply to be signed, 
to allow verification of the message’s origin, the identity of the recipient does not have to 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

be known. As we discuss below, this feature allows for messages to be created by clients 
and delivered to services whose creation is caused by the message itself. 

5.2 Least-Privilege Model 
The Grid Resource Acquisition and Management (GRAM) [8, 9] is a fundamental GT 
service. It enables remote clients to securely instantiate, manage and monitor processes 
on remote resources. Because GRAM enables the instantiation of processes, it is a focal 
point of the GT security model. 

We describe here our GT3 GRAM implementation, focusing on the aspects of the design 
demonstrating the application of the least privilege model. The key point of our design is 
the small amount of code that needs to run with privileges and the tight constraints on 
that code. 

5.2.1 GT3 GRAM  
GRAM allows remote clients to initiate and manage computational tasks (“jobs”) 
securely on a resource. A client creates a description of the job they wish to have run, 
specifying such things as the name of the executable, the working directory, where input 
and output should be stored, and the queue in which it should run. This description is sent 
to the resource and ultimately results in the creation of an instance of a Managed Job 
Service (MJS). The MJS is a Grid service that acts as an interface to the job, instantiating 
the it and then allowing it to be controlled and monitored with standard Grid and Web 
service mechanisms. 

An MJS is created by invoking a create operation on a MJS factory service. While 
conceptually we want to run one MJS factory service per user account, this is not ideal in 
practice because it can involve resource consumption by factories that often sit idle when 
the user is not using the resource. Thus, we introduce the Master Managed Job Factory 
Service (MMJFS). One MMJFS runs on each resource, in a non-privileged account, and 
invokes Local Managed Job Factory Services (LMJFS) for users in their account as 
needed. A service called a Proxy Router exists to route incoming requests from a user to 
either that user's LMJFS, if present, or the MMJFS, if a LMJFS is not present for the user 
making the request. 

All MJS and MJS factories are implemented as Grid Services running in a hosting 
environment. Each account has one hosting environment running in it, with MJS 
instances and a MJS Factory running in that hosting environment. This approach allows 
for the creation multiple services in a lightweight manner. 

 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

Host
Creds

GRIM

Grid-
mapfile

MJMFS

LJMFS

Setuid
Starter

Job

Requestor

User
Proxy

(1)

(2)

(3)

(4)

Creds

(5)(6)

Factory
Account

User
Account

Resource

Signed
Request Proxy

Router

MJS

(7)

 
Figure 4: A requestor initiating a job with the GT3 GRAM system. The steps are described in the 

text. 

Figure 4 shows a requestor initiating a job in the GT3 GRAM architecture. On the left is 
the requestor, with a set of GSI credentials. The resource, with its GRAM services and 
host credentials, is on the right. Job initiation proceeds as follows. 

1. The requestor forms a job description and signs it with their GSI credentials. This 
request is sent to the target resource on which process initiation is desired. 

2. The Proxy Router service accepts the request and either routes it to an LMJFS, if 
present (skip to step 6), or to the MMJFS otherwise (on to step 3). 

3. The MMJFS verifies the signature on the request and establishes the identity of 
the requestor. It then determines the local account in which the job should be run 
based on the requestor’s identity using the grid-mapfile, a local configuration file 
containing mappings from GSI identities to local identities [4].  

4. The MMJFS invokes the Setuid Starter process to start a LMJFS for the requestor. 
The Setuid Starter is a privileged program (typically setuid-root) that has the sole 
function of starting a pre-configued LMJFS for a user.  

5. When a LMJFS starts, it needs to acquire credentials and register itself with the 
Proxy Router. To register, the LMJFS sends a message (not shown) to the Proxy 
Router. This informs the  Proxy Router of the existence of the LMJFS so that it 
can route future requests for job initiation to it. 
 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

The LMJFS invokes the Grid Resource Identity Mapper (GRIM) to acquire a set 
of credentials. GRIM is a privileged program (typically setuid-root) that accesses 
the local host credentials and from them generates a set of GSI proxy credentials 
for the LMJFS. This proxy credential has embedded in it the user’s Grid identity, 
local account name and local policy to help the client verify that the LMJFS is 
appropriate for its needs. 

6. The LMJFS receives the signed job request. The LMJFS verifies the signature on 
the request to make sure it has not been tampered with and to verify the requestor 
is authorized to access the local user account in which the LMJFS is running. 
Once these verifications are complete, the LMJFS invokes an MJS with the job 
initiation request and returns the address (GSH) of the MJS to the user.   

7. The requestor connects to the MJS to initiate the job. The requestor and MJS 
perform mutual authentication, the MJS using the credentials acquired from 
GRIM. The MJS verifies the requester is authorized to initiate processes in the 
local account. The requester authorizes the MJS as having a GRIM credential 
issued from an appropriate host credential and containing a Grid identity 
matching its own. This approach allows the client to verify that the MJS it is 
talking to is running not only on the right host but also in an appropriate account. 
The user then delegates GSI credentials to the MJS for the job to use and start the 
job running. 

5.2.2 Benefits of GT3 GRAM Model 
The GRAM model described in this section has three significant benefits from a least 
privilege security perspective. 

No privileged services. Network services, since they accept and process communications 
from outside the resource, are more prone to be compromised by logic errors, buffer 
overflows, and the like. Removing privileges from these services can significantly reduce 
the impact of compromises by minimizing the privileges gained. 

Minimal privileged code. The privileged code is confined to two programs, GRIM and 
Setuid-Started. The simple and well-constrained functionality of these programs allows 
them to be audited effectively and reduces the chance they can be used maliciously to 
gain privilege elevation. 

Client-side authorization. GRIM allows the client to verify not only the resource on 
which an MJS is running on but also the account in which it is running. Thus, a client can 
act to prevent spoofing of addresses or social engineering tricks that might mislead the 
user into connecting to, and more importantly delegating credentials to, a MJS other than 
they intended. 

6 Conclusions 
Grid computing presents a number of security challenges that are met by the Globus 
Toolkit's Grid Security Infrastructure (GSI). Version 3 of the Globus Toolkit (GT3) 
implements the emerging Open Grid Services Architecture and its GSI implementation 
(GSI3) takes advantage of this evolution to improve on the security model in earlier 
versions of the toolkit (GT2). GSI3 in GT3 remains compatible (in terms of credential 

 DRAFT: Feb 12, 2003 



 DRAFT: Feb 12, 2003 

formats) with those used earlier versions, while eliminating privileged network services 
and making other improvements. Its development provides a basis for a variety of future 
work. For example, we are interested in exploiting WS-Routing to improve firewall 
compatibility; in defining and implementing standard services for authorization, 
credential conversation, identity mapping; and using WS-Policy to allow applications to 
automatically determine requirements, and locate services to meet those requirements. 

Acknowledgements 
We are pleased to acknowledge the contributions to the GT3 security design and GSI3 
implementation from Doug Engert, Thomas Sandholm, and Rachana Ananthakrishnan. 

References 
1. Simple Object Access Protocol  (SOAP) 1.1, W3C, 2000. 
2. BEA, IBM, Microsoft and SAP. Web Services Policy Language (WS-Policy), 

2002. 
3. Belani, E., Vahdat, A., Anderson, T. and Dahlin, M. The CRISIS Wide Area 

Security Architecture. 8th Usenix UNIX Security Symposium, 1998. 
4. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and 

Welch, V. A National-Scale Authentication Infrastructure. IEEE Computer, 33 
(12). 60-66. 2000. 

5. CCITT Recommendation X.509: The Directory -- Authentication Framework. 
1988. 

6. Chadwick, D.W. and Otenko, A., The PERMIS X.509 Role Based Privilege 
Management Infrastructure. 7th ACM Symposium on Access Control Models and 
Technologies, 2002. 

7. Christensen, E., Curbera, F., Meredith, G. and Weerawarana., S. Web Services 
Description Language (WSDL) 1.1, W3C, 2001. www.w3.org/TR/wsdl. 

8. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and 
Tuecke, S. A Resource Management Architecture for Metacomputing Systems. 
4th Workshop on Job Scheduling Strategies for Parallel Processing, Springer-
Verlag, 1998, 62-82. 

9. Czajkowski, K., Foster, I., Kesselman, C., Sander, V. and Tuecke, S., SNAP: A 
Protocol for Negotiating Service Level Agreements and Coordinating Resource 
Management in Distributed Systems. 8th Workshop on Job Scheduling Strategies 
for Parallel Processing, 2002. 

10. Dierks, T. and Allen, C. The TLS Protocol Version 1.0, IETF, 1999. 
http://www.ietf.org/rfc/rfc2246.txt. 

11. Ford, W., Hallam-Baker, P., Fox, B., Dillaway, B., LaMacchia, B., Epstein, J. and 
Lapp, J. XML Key Management Specification, 2001. www.w3.org/TR/2001. 

12. Foster, I. and Kesselman, C. Computational Grids. Foster, I. and Kesselman, C. 
eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 
1999, 2-48. 

13. Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. Foster, 
I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing 
Infrastructure, Morgan Kaufmann, 1999, 259-278. 

 DRAFT: Feb 12, 2003 

http://www.w3.org/TR/wsdl
http://www.ietf.org/rfc/rfc2246.txt
http://www.w3.org/TR/2001


 DRAFT: Feb 12, 2003 

 DRAFT: Feb 12, 2003 

14. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An 
Open Grid Services Architecture for Distributed Systems Integration, Globus 
Project, 2002. www.globus.org/research/papers/ogsa.pdf. 

15. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A Security Architecture for 
Computational Grids. ACM Conference on Computers and Security, 1998, 83-91. 

16. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling 
Scalable Virtual Organizations. International Journal of High Performance 
Computing Applications, 15 (3). 200-222. 2001. 

17. Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a 
Distributed System. Proc. 1990 IEEE Symposium on Research in Security and 
Privacy, 1990, IEEE Press, 20-30. 

18. Graham, S., Simeonov, S., Boubez, T., Daniels, G., Davis, D., Nakamura, Y. and 
Neyama, R. Building Web Services with Java: Making Sense of XML, SOAP, 
WSDL, and UDDI. Sams, 2001. 

19. Humphrey, M., Knabe, F., Ferrari, A. and Grimshaw, A., Accountability and 
Control of Process Creation in Metasystems. 2000 Network and Distributed 
System Security Symposium, 2000. 

20. IBM, Microsoft, RSA Security and VeriSign. Web Services Secure Conversation 
Language (WS-SecureConversation) Version 1.0, 2002. 

21. IBM, Microsoft, RSA Security and VeriSign. Web Services Trust Language (WS-
Trust), 2002. 

22. IBM, Microsoft and VeriSign. Web Services Security Language (WS-Security), 
2002. 

23. Linn, J. Generic Security Service Application Program Interface, Version 2. 
INTERNET RFC 2078, 1997. 

24. Myers, J. Simple Authentication and Security Layer (SASL), IETF, 1997. 
25. Neuman, B.C. and Ts'o, T. Kerberos: An Authentication Service for Computer 

Networks. IEEE Communications Magazine, 32 (9). 33-88. 1994. 
26. Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S., A Community 

Authorization Service for Group Collaboration. IEEE 3rd International Workshop 
on Policies for Distributed Systems and Networks, 2002. 

27. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. and Essiari, 
A., Certificate-based Access Control for Widely Distributed Resources. 8th 
Usenix Security Symposium, 1999. 

28. Tuecke, S., Engert, D., Foster, I., Thompson, M., Pearlman, L. and Kesselman, C. 
Internet X.509 Public Key Infrastructure Proxy Certificate Profile, IETF, 2001. 

29. Kornievskaia, O., Honeyman, P., Doster, B., and Coffman, K., Kerberized 
Credential Translation: A Solution to Web Access Control. 10th Usenix Security 
Symposium, 2001.  

30.  OpenSSH, www.openssh.com, 2003. 
31. Siebenlist, F., et al, OGSA Security Roadmap, 2002. 

http://www.globus.org/ogsa/Security/ogsa-sec-roadmap-v13.pdf 

http://www.globus.org/research/papers/ogsa.pdf

	GSI3: Security for Grid Services
	Abstract
	Introduction
	Grid Security Challenges
	GT2 Grid Security Model
	An OGSA Security Model
	Security as Services
	Hosting Environment
	Publishing of Security Policy
	Specified Format for Security Tokens
	The OGSA Security Model in Action

	GT3 Security Implementation
	Use of Web Services Security and Protocol
	Least-Privilege Model
	GT3 GRAM
	Benefits of GT3 GRAM Model


	Conclusions
	Acknowledgements
	References

